Кремниевая фотоника современное состояние и перспективы развития. Фотоника. Современная и особенности. Работа и применение. Фотонные интегральные схемы

Не исключено, что когда-нибудь средствами кремниевой фотоники весь огромный ЦОД можно будет превратить в единый гипермасштабируемый компьютер , а если принять во внимание достигнутые к тому времени успехи в области искусственного интеллекта , то несложно представить себе нечто наподобие Океана на Солярисе, описанного Станиславом Лемом . Пока же нынешние серверы и ЦОДы по своему состоянию напоминают ПК в их бытность до появления SATA и USB : внутри - нескладные ленточные кабели, снаружи - последовательные и параллельные порты для мыши, клавиатуры и колонок. Но уже в 2025 году картина станет иной: все будет унифицировано и подключено по оптоволокну, что обеспечит качественно иной подход к целому ряду задач, в частности, к масштабированию и высокопроизводительным вычислениям. И все это станет возможным благодаря достижениям в области кремниевой фотоники.

Кремниевой фотоникой называют синергию двух групп технологий - электроники и оптики, которая позволяет принципиально изменить систему передачи данных на расстояниях от миллиметров до тысяч километров. По значимости результат внедрения кремниевой фотоники сравнивают с изобретением полупроводников, потому что ее внедрение позволяет еще на много лет вперед сохранить действие закона Мура , составляющего базис развития информационных и коммуникационных технологий.

Тем, кому интересны фундаментальные основы этого направления, можно порекомендовать вышедшую в 2017 году научно-популярную книгу «Кремниевая фотоника - источник следующей информационной революции» (Daryl Inniss, Roy Rubenstein "Silicon Photonics: Fueling the Next Information Revolution"). Более серьезные введения в кремниевую фотонику - книга «Silicon Photonics III: Systems and Applications» группы авторов и «Silicon Photonics: An Introduction» (Graham T. Reed, Andrew P. Knights). Также на эту тему есть несколько полезных материалов на сайте компании Mellanox .

Как это работает

Если же ограничиться практическими приложениями к компьютингу, то, как и в случае с электроникой, оптику и физику твердого тела можно оставить в стороне. Для понимания на системотехническом уровне достаточно самых поверхностных сведений о предмете. Казалось бы все очевидно: последовательность электрических сигналов преобразуется передатчиком T в последовательность оптических сигналов. По кабелю она попадает в приемник R, который возвращает им электрическую форму. В качестве источников света могут использоваться несколько типов лазеров, а для передачи одно- или мультимодальные кабели.


Но не стоит забывать о научной и инженерной сложности проблем, возникающих при реализации принципов кремниевой фотоники. О ней можно судить хотя бы по тому, что первые экспериментальные работы в этом направлении датируются еще серединой 80-х годов ХХ века, попытки коммерческих разработок были сделаны в начале 2000-х годов, а первые коммерческие результаты были получены только после 2016 года. Сорок лет... При том, что практическое использование оптоволоконной связи началось в середине шестидесятых, а экспериментальные работы - намного раньше.

Суть проблемы материалов на основе кремния заключается в невозможности работать на тех же частотах, которые используются в волоконной оптике, а использовать альтернативные материалы практически невозможно по экономическим причинам. В существующие технологии полупроводникового производства вложены колоссальные средства. Для реализации принципов кремниевой фотоники их нужно адаптировать к существующим технологиям. Решением может быть включение в состав микросхем миниатюрных приемников и передатчиков и прокладка между ними соответствующих волноводов. Это сложнейшая инженерно-техническая задача, которая по состоянию на 2017 год решена.

Раньше других это удалось сделать Intel - корпорация уже предложила свои продукты рынку. Вскоре следует ожидать объявлений от IBM , за ними последуют Mellanox , Broadcom , Ciena , Juniper и ряд других крупных компаний. Параллельно скупаются добившиеся успеха стартапы. Процесс пошел, но не быстро. Трудности вызваны тем, что создание новых продуктов требует значительных средств и времени, что дает преимущества крупнейшим вендорам.

Четыре уровня коммуникаций

Технологии кремниевой фотоники уже сегодня позволяют создавать 100 Гбит Ethernet , а в обозримом будущем 400 Гбит и 1 Тбит. Такие скорости обмена данными открывают возможности для конвергенции современных архитектур в качественно новые - на уровне стойки RSA (Rack-Scale Architecture) и на уровне ЦОДа ESSA (Extended-scale system architecture). Предел первой ограничен так называемым подом (одной или несколькими стойками), вторая охватывает весь ЦОД. Компоненты этих инфраструктур связываются удаленно по шине PCIe (PCIe-bus interconnects at a distance).

Средствами силиконовой фотоники создается иерархическая система коммуникаций, разделенная на 4 уровня:

Уровень 1 «Чип» : Внедрение технологий кремниевой фотоники внутрь чипа интересно по нескольким соображениям:

  • Чипов существенно больше, чем стоек, следовательно, потребность в приемниках и передатчиках велика, и эти технологии будут быстро развиваться.
  • Существенно повысятся скорости обмена вне чипа, поэтому могут заметно измениться принципы системного проектирования.
  • В отдаленной перспективе можно представить, что и между компонентами чипа могут использоваться оптические коммуникации, например для обмена между ядрами. Но на таких коротких расстояниях медь надолго сохранит свои позиции.

Вот и наступила весна… А вместе с ней пришла пора очередного Форума Intel для разработчиков (IDF), проводимого дважды в год в солнечной Калифорнии и регулярно гостящего в других городах мира (с недавних пор - и в России). Причем, весна в данном случае пришлась не просто для красного словца - в Сан-Франциско, где IDF в очередной раз проходит с 1 по 3 марта в громадном конференц-центре Moscone West,

действительно сейчас тепло, цветут деревья и кусты, обдавая весенними ароматами, а местные жители ходят по улицам в рубашках или легких куртках, если нет дождя. На этом жизнерадостном фоне прилетев из заснеженной Москвы не так просто было бы просиживать целыми днями в конференц-залах и пресс-румах, толкаться среди нескольких тысяч посетителей и организаторов IDF на шоу-кейсах и в кулуарах. Если бы не та, порой уникальная и захватывающая информация, которая громадными порциями сваливается на тебя, не оставляя ни минуты покоя. Даже мне, регулярному посетителю центральных Форумов Intel (а также многих других выставок и конференций сходной тематики), пресытившемуся, казалось бы, подобными мероприятиями и воспринимающими их едва ли не как очередной голливудский блокбастер, добротно слепленный по давно известным клише, нередко приходится удивляться тому потоку новинок, который заготовили для участников IDF его организаторы. Удивляться и даже местами восхищаться…

Нашим постоянным читателям, наверное, уже нет нужды объяснять, что такое Intel Developer Forum и «с чем его едят». Это мероприятие, регулярно в течение многих лет проводимое корпорацией Intel и ее ближайшими друзьями по IT-цеху, имеет свои индивидуальные особенности, отличающие его как от различных компьютерных выставок (вроде CeBIT, Computex, Comdex или CES, где сотни и тысячи производителей IT-продукции хвастаются своими достижениями с целью их повыгоднее продать), так и от крупных мировых научных и технических конференций (вроде Material Research Society Meeting, IEEE и других подобных, где сотни ведущих мировых институтов и исследовательских лабораторий сообщают о новейших научных открытиях, изобретениях и технологиях, внедрением которых предстоит заниматься еще немало лет). На мой взгляд, IDF все же ближе именно к последним, чем к первым. Поскольку Intel, расходующая на Research & Development более 4 миллиардов долларов ежегодно, на IDF как раз старается продемонстрировать не столько текущие и готовые к выпуску на рынок продукты (микропроцессоры, платформы и пр.),

сколько сообщить индустрии тот вектор, в котором она будет развиваться в течение ближайших лет. Обнародовать те нынешние и будущие технологии, внедрением которых корпорация занимается вместе со своими партнерами и другими IT-разработчиками, привлечь на свою сторону новых исследователей и инженеров (то есть «девелоперов», по названию Форума), а возможно, и обсудить целесообразность тех или иных шагов в рамках всего IT-сообщества. И хотя, безусловно, «выставочно-продажная» канва на IDF в некоторой мере тоже присутствует, наиболее ценной и интересной, на мой взгляд, является именно исследовательски-технологическая его часть.

Вот и «нулевой» день нынешнего IDF, прошедший 28 февраля для ведущей прессы и аналитиков со всего мира, преподнес несколько сюрпризов, о чем я и постараюсь рассказать в этом репортаже, предваряющем рассказ о самом Форуме.

Кремниевая нанотехнология: взгляд на 20 лет вперед

В первом докладе нулевого дня речь пошла о том, какими путями может и будет развиваться кремниевая технология производства вычислительных устройств в ближайшие десятилетия. Кратко и примитивно это можно было бы назвать «оправданием закона Мура на 20 лет вперед», если бы такой банальный на первый взгляд посыл не был подкреплен захватывающими дух деталями научных исследований в области нанотехнологий и их воплощением на практике в технологии промышленного масштаба. Доклад представил Пауло Джарджини (Paulo Gargini, на фото), директор Intel Technology Strategy и Intel Nanotechnology Research.

Более чем часовая презентация проходила в очень быстром темпе, не давая ни на секунду опомниться и спокойно поразмышлять над тем или иным слайдом. Ее подробный пересказ, видимо, был бы полезен для некоторых наших вдумчивых читателей. Но он занял бы непомерно много места (это около сотни «серьезных» слайдов, к каждому из которых еще нужно добавить немало комментариев). Поэтому я отмечу лишь отдельные наиболее интересные, на мой взгляд, моменты, тем более что некоторые из присутствовавших в нем деталей я и мои коллеги уже описывали в своих статьях по результатам предыдущих IDF и недавних «технологических прорывов» Intel. Более развернуто я изложу этот материал, возможно, в другой раз.

Последние 40 лет число элементов на кремниевых кристаллах неуклонно продолжало удваиваться каждые два года, а стоимость одного транзистора на кристалле теми же темпами снижалась.

Лет 10 назад ученые предрекали большие проблемы при переходе к 100-нанометровым приборам, но, к счастью, этого не случилось, и нынче у лидеров отрасли есть хорошо изученные перспективы развития традиционной кремниевой технологии с планарными КМОП-транзисторами еще лет на 10 вперед (см. слайд).

Необходимость в принципиально новых электронных приборах возникнет лишь году к 2013-му, когда возможности миниатюризации нынешних приборов фактически будут исчерпаны.

Среди новых кремниевых приборов рассматриваются многозатворные (например, tri-gate) нанотранзисторы, приборы на основе кремниевых нанотрубок, полностью окруженные затвором, а также приборы с квазибаллистическим транспортом.

В более отдаленной перспективе рассматриваются также углеродные нанотрубки диаметром в единицы нанометров, которые, в зависимости от строения, могут выступать в качестве металла или полупроводника. Интересными для наноэлектроники являются приборы на базе гетероструктур InSb (с уникально высокой подвижностью), см. слайд.

А что же будет после 2020 года, когда КМОП-технология исчерпает возможности миниатюризации, достигнув атомарного предела?

Тогда в ход, возможно, пойдет спинтроника - оперирование магнитными моментами элементарных частиц:

Кое-кто поговаривает и о квантовых компьютерах. Пока же КМОП-технология жива и закон Мура будет действовать еще, по крайней мере, лет 15-20.

Кремниевая фотоника: новый прорыв

Другим интересным событием нулевого дня этого IDF стал доклад о , созданном на кремниевом кристалле в Intel. Строго говоря, новость об этом обошла мир за несколько дней до IDF (17 февраля вышла соответствующая статья в Nature и пресс-релиз корпорации), но здесь главные разработчики нового прибора прилюдно поделились многими доселе неизвестными деталями и продемонстрировали аудитории многочисленные кристаллы с такими лазерами. Например, на этом фото (фото автора) кристалл содержит сразу 8 таких лазеров.

Не вдаваясь в подробности, отметим, что для того, чтобы создать такой лазер на кремнии, ученым Intel пришлось решить важную проблему - так называемой «двухфотонной абсорбции», которая ранее препятствовала созданию непрерывного лазера на кремнии.

Использование кремния в качестве материала для создания лазера и для многократного усиления ИК-излучения (благодаря гигантскому, примерно в 20000 раз эффекту Рамана),

прежде было проблематично, поскольку рамановское усиление при мощной накачке выходило в насыщение, и получаемой при насыщении мощности не хватало для создания непрерывного лазера.

Дело в том, что энергии одного инфракрасного фотона (кванта света) недостаточно для того, чтобы при соударении с атомом кристаллической решетки кремния выбить из него (освободить) электрон. Однако если с атомом столкутся сразу два фотона (что нередко происходит при интенсивной накачке лазера внешним излучением), то ионизация атома становится возможной, и свободные электроны в кремнии начинают сами поглощать фотоны, препятствуя тем самым дальнейшему рамановскому усилению. Проблему удалось решить, создав вдоль оптического канала так называемую p-i-n-структуру (области кремния с дырочной и электронной проводимостью соответственно по бокам нелегированного оптического канала в кремнии, см. рисунок).

Подавая электрическое смещение между p- и n-областями кремния, «двухфотонные» свободные электроны можно эффективно удалять из области оптического канала, существенно повышая тем самым рамановское усиление в кремнии и создавая непрерывный лазер.

На базе данного решения можно создавать два важных оптических прибора прямо на едином кристалле кремния - усилитель и модулятор сигналов.

А также при помощи каскадов зеркал (расположенных прямо на кремнии) делать многоволновые оптические каналы связи и компактные лазеры для различных применений.


В руках у Mario Paniccia, директора Intel Photonic Technology Lab, кристалл нового непрерывного кремниевого лазера (справа) и традиционный дорогой рамановский оптический усилитель (слева):

Это достижение сотрудников Intel открывает новые горизонты развития кремниевой фотоники и ее дальнейшего внедрения в традиционную микроэлектронику.

IBM объявили о прорыве в области кремниевой фотоники – была создана первая полностью интегрированная мультиплексированная микросхема. Новое устройство позволит отдельным чипам взаимодействовать между собой с помощью оптических, а не электромагнитных волн, что позволит повысить пропускную способность до 100 ГБ в секунду и выше. Эта микросхема размещается на одном кристалле кремния и имеет решающее значение для долгосрочного внедрения оптических технологий в микромасштабах. Но почему у таких мощных компаний как IBM и Intel потратили целые десятилетия на изучение кремниевой фотоники?

В теории, с помощью кремниевой фотоники можно решить многие серьезные проблемы, связанные с дальнейшим использованием медных соединителей. Одна из основных проблем медного провода в том, что его нельзя масштабировать также активно, как другие жизненно важные детали современного процессора. После определенной точки физически невозможно уменьшать медный провод дальше без ущерба для его производительности и/или срока годности. В теории, оптические соединения могут передавать данные гораздо быстрее, потребляя при этом меньше энергии. Помимо этого, многие компании считают, что кремниевая фотоника является необходимой для создания суперкомпьютеров с вычислительной мощность около одного эксафлопса (exascale computing).

К сожалению, кремний — это плохая среда для оптических приборов, так как масштабы производства настолько разняться (оптические волноводы и другие компоненты гораздо больше, чем КМОП кремния), что не существует инженерных решений, которые могли бы эффективно и недорого интегрировать оптические элементы в существующие КМОП с использованием кремния, а не дорогостоящих альтернативных материалов, таких как, например, арсенид галлия. Теперь же компания смогла разместить чипы, созданные по технологии кремниевой фотоники, прямо на модуле процессора.

График из презентации Intel о кремниевой фотоники иллюстрирует и энергопотребление, которого стараются достигнуть производители. Долгосрочные планы на кремниевую фотонику предлагают таки пропускную способность и количество энергии на бит информации, которая недоступна медным соединениям.
После десятилетий работы кремниевая фотоника может казаться лишь еще одной сумасшедшей идеей, которая хорошо выглядит на бумаге, но совершенное неприменима на практике, но прогресс не стоит на месте, и хотя передовые компании, такие как IBM, Intel или HP, могут не выпустить технологию на коммерческом уровне в ближайшее время, она наверняка найдет применения в научных лабораториях, сверхкомпьютерах и датацентрах.

18 сентября текущего года компания Intel совместно с Калифорнийским университетом (University of California, Santa Barbara) продемонстрировала первый в мире гибридный кремниевый лазер с электрической накачкой, который объединяет в себе возможности излучения и распространения света по кремниевому волноводу, а также использует преимущества низкой стоимости кремниевого производства. Создание гибридного кремниевого лазера - это очередной шаг на пути к получению кремниевых чипов, содержащих десятки и даже сотни дешевых лазеров, которые в будущем составят основу компьютерной электроники.

История кремниевой фотоники

В научно-исследовательской работе корпорации Intel одним из главных направлений является кремниевая фотоника. Очередным прорывом компании в этой области стало создание первого в мире гибридного кремниевого лазера с электрической накачкой.

Теперь фактически открыт путь для создания оптических усилителей, лазеров и преобразователей длины волны света с использованием хорошо отработанной технологии производства кремниевых микросхем. Постепенно «силиконизация» фотоники становится реальностью и в будущем даст возможность создавать недорогие высокопроизводительные оптические цепи, позволяющие осуществлять обмен данными как внутри, так и снаружи ПК.

Оптические системы связи имеют определенные преимущества по сравнению с традиционными кабельными системами, главным из которых является их огромная пропускная способность. К примеру, используемые сегодня оптические волокна в системах связи могут одновременно передавать до 128 различных потоков данных. Теоретический предел скорости передачи данных по оптоволокну оценивается в 100 трлн бит в секунду. Для того чтобы представить эту громадную цифру, приведем простое сравнение: такой пропускной способности вполне достаточно, чтобы обеспечить передачу телефонных переговоров одновременно всех жителей планеты. Поэтому вполне понятно, что оптические системы связи привлекают к себе пристальное внимание всех научно-исследовательских лабораторий.

Для передачи информации с использованием светового излучения необходимо иметь несколько обязательных компонентов: источники излучения (лазеры), модуляторы световых волн, посредством которых в световую волну закладывается информация, детекторы и оптоволокно для передачи данных.

С помощью нескольких лазеров, излучающих волны различной длины, и модуляторов можно посредством одного оптоволокна передавать одновременно множество потоков данных. На приемной стороне для обработки информации используются оптический демультиплексор, выделяющий из пришедшего сигнала несущие с различной длиной волны, и оптические детекторы, позволяющие преобразовать оптические сигналы в электрические. Структурная схема оптической системы связи показана на рис. 1.

Рис. 1. Структурная схема оптической системы связи

Исследования в области оптических систем связи и оптических цепей начались еще в 1970-х годах - тогда оптические цепи представлялись как некий оптический процессор или супероптический чип, в котором воедино интегрировались и передающее устройство, и модулятор, и усилитель, и детектор, и все необходимые электронные компоненты. Однако практической реализации этой идеи мешало то обстоятельство, что компоненты оптических цепей изготавливались из разных материалов, поэтому интегрировать в единую платформу (чип) на основе кремния все необходимые компоненты было невозможно. Несмотря на триумф кремния в области электроники, его применение в оптике казалось весьма сомнительным.

Изучение возможности использования кремния для оптических цепей ведется на протяжении уже многих лет - со второй половины 1980-х годов. Однако особого прогресса за это время достигнуто не было. По сравнению с другими материалами попытки применения кремния для построения оптических цепей не приносили ожидаемых результатов.

Дело в том, что из-за особенностей структуры запрещенной зоны кристаллической решетки кремния рекомбинация зарядов в нем приводит в основном к тепловыделению, а не к излучению фотонов, что не позволяет применять его для создания полупроводниковых лазеров, являющихся источниками когерентного излучения. В то же время в таких полупроводниках, как арсенид галлия или фосфид индия, энергия рекомбинации высвобождается главным образом в виде инфракрасных фотонов, следовательно, эти материалы могут служить источниками фотонов и использоваться для создания лазеров.

Другая причина, препятствующая применению кремния в качестве материала для создания оптических цепей, заключается в том, что кремний не обладает линейным электрооптическим эффектом Поккельса, на основе которого построены традиционные быстрые оптические модуляторы. Эффект Поккельса заключается в изменении коэффициента преломления света в кристалле под воздействием приложенного электрического поля. Именно за счет этого эффекта можно осуществлять модуляцию света, поскольку изменение коэффициента преломления вещества соответствующим образом приводит к изменению фазы проходящего излучения.

Эффект Поккельса проявляется только у пьезоэлектриков и за счет малой инертности теоретически позволяет осуществлять модуляцию света вплоть до частоты 10 ТГц. Кроме того, вследствие линейной зависимости между показателем преломления и напряженностью электрического поля нелинейные искажения при модуляции света относительно невелики.

Другие оптические модуляторы основаны на таких эффектах, как электропоглощение (electro-absorption) или электропреломление (electro-refrection) света под воздействием приложенного электрического поля, однако и эти эффекты в кремнии выражены слабо.

Модуляция света в кремнии может быть получена на основе термоэффекта. То есть при изменении температуры кремния меняются его коэффициент преломления и коэффициент поглощения света. Тем не менее из-за наличия гистерезиса такие модуляторы довольно инертны и не позволяют получать скорость модуляции выше нескольких килогерц.

Другой способ модуляции излучения на основе кремниевых модуляторов основан на эффекте поглощения света на свободных носителях (дырках или электронах). Этот способ модуляции также не позволяет получить высоких скоростей, поскольку связан с физическим движением зарядов внутри кремниевого модулятора, что само по себе является инерт-ным процессом. В то же время стоит отметить, что кремниевые модуляторы на основе описанного эффекта теоретически могут поддерживать скорость модуляции вплоть до 1 ГГц, однако на практике пока реализованы модуляторы лишь со скоростью до 20 МГц.

При всех сложностях использования кремния в качестве материала для оптических цепей в последнее время в этом направлении наметились существенные сдвиги. Как выяснилось, легирование кремния эрбием (Er) изменяет структуру запрещенной зоны таким образом, что рекомбинация зарядов сопровождается излучением фотонов, то есть появляется возможность использовать кремний для получения полупроводниковых лазеров. Первый коммерческий лазер на основе легированного кремния был создан компанией ST Micro-elect-ronics. Перспективным также является применение полупроводниковых перестраиваемых лазеров, продемонстрированных компанией Intel еще в 2002 году. Такие лазеры используют в качестве резонатора интерферометр Фабри-Перо и излучают на нескольких частотах (многомодовый режим). Для выделения монохроматического излучения служат специальные внешние фильтры на основе дифракционных решеток (дисперсионные фильтры) - рис. 2.

Рис. 2. Перестраиваемые лазеры с фильтрами
на основе дисперсионных решеток

Получаемая система лазера с внешним дисперсионным резонатором позволяет перестраивать длину волны излучения. Традиционно для получения требуемой длины волны используется прецизионная настройка фильтров относительно резонатора.

В корпорации Intel смогли создать перестраиваемый лазер, в котором вообще отсутствуют подвижные части. Он состоит из недорогого многомодового лазера с решеткой, внедренной внутрь волновода. Изменяя температуру решетки, можно настраиваться на определенную длину волны, то есть осуществлять переключение между отдельными модами лазера.

Кремниевые оптические модуляторы

В феврале 2004 года компания Intel сделала очередной прорыв в области кремниевой фотоники, продемонстрировав первый в мире кремниевый оптический фазовый модулятор на частоте 1 ГГц.

Этот модулятор основан на эффекте рассеивания света на свободных носителях заряда и по своей структуре во многом напоминает CMOS-транзистор на основе технологии SOI (кремний на изоляторе). Структура оптического фазового модулятора показана на рис. 3.

Рис. 3. Структурная схема оптического кремниевого фазового модулятора

На подложке кристаллического кремния со слоем изолятора (диоксида кремния) располагается слой кристаллического кремния n -типа. Далее следует слой диоксида кремния, в центре которого располагается слой поликристаллического кремния p -типа, который выполняет функцию волновода. Этот слой отделен от кристаллического кремния n -типа тончайшим слоем изолятора (диэлектрик затвора), толщина которого составляет всего 120 ангстрем. Для того чтобы минимизировать рассеивание света за счет контакта с металлом, металлические контакты отделены от слоя оксида кремния тонким слоем поликристаллического кремния с обеих сторон от волновода.

Когда к управляющему электроду прилагается положительное напряжение, по обеим сторонам диэлектрика затвора индуцируется заряд, причем со стороны волновода (поликристаллический кремний p -типа) это дырки, а со стороны кремния n -типа - свободные электроны.

В присутствии свободных зарядов в кремнии изменяется коэффициент преломления кремния. Изменение коэффициента преломления вызывает, в свою очередь, фазовый сдвиг проходящей световой волны.

Рассмотренный выше модулятор позволяет производить именно фазовую модуляцию опорного сигнала. Для того чтобы превратить фазовую модуляцию в амплитудную (сигнал, модулированный по фазе, трудно детектировать в отсутствие опорного сигнала), в оптическом модуляторе дополнительно используется интерферометр Маха-Зендера (MZI), имеющий два плеча, в каждом из которых интегрирован фазовый оптический модулятор (рис. 4).

Рис. 4. Структурная схема оптического модулятора

Применение фазовых оптических модуляторов в обоих плечах интерферометра позволяет обеспечить равенство оптических длин плечей интерферометров.

Опорная световая волна, распространяющаяся по оптоволокну, разделяется с помощью Y-разветвителя на две когерентные волны, каждая из которых распространяется по одному из плечей интерферометра. Если в точке соединения плечей интерферометра обе волны синфазны, то в результате сложения этих волн получится та же волна (потерями в данном случае пренебрегаем), что и до интерферометра (конструктивная интерференция). Если же волны складываются в противофазе (деструктивная интерференция), то результирующий сигнал будет иметь нулевую амплитуду.

Такой подход позволяет осуществлять амплитудную модуляцию несущего сигнала - прикладывая напряжение к одному из фазовых модуляторов, фазу волны в одном из плечей интерферометра меняют на n или не меняют вовсе, обеспечивая тем самым условие для деструктивной или конструктивной интерференции. Таким образом, прикладывая напряжение к фазовому модулятору с частотой f , можно осуществлять амплитудную модуляцию сигнала с той же самой частотой f .

Как уже отмечалось, кремниевый оптический модулятор компании Intel, продемонстрированный в феврале 2004 года, был способен модулировать излучение на скорости 1 ГГц. Впоследствии, в апреле 2005 года, компания Intel продемонстрировала модулятор, функционирующий уже на частоте 10 ГГц.

Кремниевый лазер непрерывного действия на эффекте Рамана

В феврале 2005 года компания Intel объявила об очередном технологическом прорыве - создании кремниевого лазера непрерывного действия на эффекте Рамана.

Эффект Рамана используется уже достаточно давно и находит широкое применение для создания усилителей света и лазеров на основе оптического волокна.

Принцип действия подобных устройств за-ключается в следующем. Лазерное излучение (излучение накачки) с длиной волны заводится в оптическое волокно (рис. 5). В оптическом волокне фотоны поглощаются атомами кристаллической решетки, которые в результате начинают «раскачиваться» (образуются колебательные фононы), а кроме того, образуются фотоны с меньшей энергией. То есть поглощение каждого фотона с длиной волны l=1,55 mm приводит к образованию фонона и фотона с длиной волны l=1,63 mm .

Рис. 5. Принцип действия усилителя света за счет эффекта Рамана

Теперь представим, что существует также модулированное излучение, которое заводится в то же самое волокно, что и излучение накачки, и приводит к индуцированному излучению фотонов. В результате излучение накачки в таком волокне постепенно преобразуется в сигнальное, модулированное, усиленное излучение, то есть достигается эффект оптического усиления (рис. 6).

Рис. 6. Использование эффекта Рамана для усиления
модулированного излучения в оптическом волокне

Проблема, однако, заключается в том, что для подобного преобразования пучка накачки в сигнальное излучение и соответственно усиления сигнального излучения требуется, чтобы и сигнальное излучение, и излучение накачки прошли по оптоволокну несколько километров. Безусловно, схемы усиления на основе многокилометрового оптоволокна нельзя назвать простыми и дешевыми, вследствие чего применение их существенно ограничено.

В отличие от стекла, которое составляет основу оптоволокна, эффект Рамана в кремнии выражен в 10 тыс. раз сильнее, и для достижения того же результата, что и в оптоволокне, достаточно, чтобы излучение накачки и сигнальное излучение распространялись вместе всего на расстояние в несколько сантиметров. Таким образом, использование эффекта Рамана в кремнии позволяет создавать миниатюрные и дешевые усилители света или оптические лазеры.

Процесс создания кремниевого оптического усилителя, или лазера на эффекте Рамана, начинается с создания оптического кремниевого волновода. Этот технологический процесс ничем не отличается от процесса создания традиционных CMOS-микросхем с применением кремниевых подложек, что, конечно же, является огромным преимуществом, поскольку значительно удешевляет сам процесс производства.

Излучение, заводимое в такой кремниевый волновод, проходит всего несколько сантиметров, после чего (вследствие эффекта Рамана) полностью преобразуется в сигнальное излучение с большей длиной волны.

В ходе экспериментов выяснилось, что мощность излучения накачки целесообразно увеличивать только до определенного предела, поскольку дальнейшее увеличение мощности приводит не к усилению сигнального излучения, а, наоборот, к его ослаблению. Причиной этого эффекта является так называемое двухфотонное поглощение, смысл которого заключается в следующем. Кремний - оптически прозрачное вещество для инфракрасного излучения, поскольку энергия фотонов инфракрасного излучения меньше ширины запрещенной зоны кремния и ее не хватает для перевода атомов кремния в возбужденное состояние с высвобождением электрона. Однако если плотность фотонов велика, то может возникнуть ситуация, когда одновременно два фотона сталкиваются с атомом кремния. В этом случае их суммарной энергии достаточно для перевода атома с высвобождением электрона, то есть атом переходит в возбужденное состояние с поглощением одновременно двух фотонов. Такой процесс называется двухфотонным поглощением.

Свободные электроны, образующиеся в результате двухфотонного поглощения, в свою очередь, поглощают как излучение накачки, так и сигнальное излучение, что приводит к сильному ослаблению эффекта оптического усиления. Соответственно чем выше мощность излучения накачки, тем сильнее проявляется эффект двухфотонного поглощения и поглощения излучения на свободных электронах. Негативное последствие двухфотонного поглощения света длительное время не позволяло создать кремниевый лазер непрерывного действия.

В кремниевом лазере, созданном в лаборатории Intel, впервые удалось избежать эффекта двухфотонного поглощения излучения, точнее не самого явления двухфотонного поглощения, а его негативного последствия - поглощения излучения на образующихся свободных электронах. Кремниевый лазер представляет собой так называемую PIN-структуру (P-type - Intrinsic - N-type) (рис. 7). В такой структуре кремниевый волновод встраивается внутрь полупроводниковой структуры с P- и N-областью. Такая структура подобна схеме планарного транзистора со стоком и истоком, а вместо затвора интегрируется кремниевый волновод. Сам кремниевый волновод образуется как прямоугольная в поперечном сечении область кремния (коэффициент преломления 3,6), окруженная оболочкой из оксида кремния (коэффициент преломления 1,5). Благодаря такой разнице в коэффициентах преломления кристаллического кремния и оксида кремния удается сформировать оптический волновод и избежать потерь излучения за счет поперченного распространения.

Рис. 7. PIN-cтруктура кремниевого лазера непрерывного действия

Используя такую волновую структуру и лазер накачки мощностью в доли ватта, удается создать излучение в волноводе с плотностью порядка 25 MВт/см 2 , что даже больше плотности излучения, которую можно получить с помощью мощных полупроводниковых лазеров. Рамановское усиление при такой плотности излучения не слишком велико (порядка нескольких децибел на сантиметр), однако этой плотности вполне достаточно для реализации лазера.

Для того чтобы устранить негативное последствие поглощения излучения на свободных электронах, образующихся в волноводе в результате двухфотонного поглощения, кремниевый волновод размещается между двумя затворами. Если между этими затворами создать разность потенциалов, то под воздействием электрического поля свободные электроны и дырки будут «вытягиваться» из кремниевого волновода, устраняя тем самым негативные последствия двухфотонного поглощения.

Для того чтобы на базе данной PIN-структуры сформировать лазер, необходимо в торцы волновода добавить два зеркала, одно из которых должно быть полупрозрачным (рис. 8).

Рис. 8. Схема кремниевого лазера непрерывного действия

Гибридный кремниевый лазер

Кремниевый лазер непрерывного действия на основе эффекта Рамана в основе своей предполагает наличие внешнего источника излучения, которое используется в качестве излучения накачки. В этом смысле данный лазер не решает одну из главных задач кремниевой фотоники - возможности интегрировать все конструктивные блоки (источники излучения, фильтры, модуляторы, демодуляторы, волноводы и т.д.) в единый кремниевый чип.

Более того, использование внешних источников оптического излучения (расположенных вне чипа или даже на его поверхности) требует очень высокой точности юстировки лазера относительно кремниевого волновода, поскольку разъюстировка в несколько микрон может привести к неработоспособности всего уст-ройства (рис. 9). Требование прецизионной юстировки не позволяет вывести данный класс устройств на массовый рынок и делает их достаточно дорогими. Поэтому выравнивание кремниевого лазера относительно кремниевого волновода является одной из важнейших задач кремниевой фотоники.

Рис. 9. При использовании внешних лазеров требуется прецизионная юстировка лазера
и волновода

Данная задача может быть решена в случае, если лазер и волновод создаются в одном кристалле в рамках одного технологического процесса. Именно поэтому создание гибридного кремниевого лазера можно рассматривать как выход кремниевой фотоники на новой уровень.

Принцип действия такого гибридного лазера довольно прост и основан на излучающих свойствах фосфида индия (InP) и способности кремния проводить свет.

Структура гибридного лазера показана на рис. 10. Фосфид индия, выполняющий функцию активного вещества полупроводникового лазера, расположен непо-средственно над кремниевым волноводом и отделен от него тончайшим слоем диэлектрика (его толщина составляет всего 25 атомных слоев) - оксида кремния, который является «прозрачным» для генерируемого излучения. При приложении напряжения между электродами возникает поток электронов по направлению от отрицательных электродов к положительному. В результате через кристаллическую структуру фосфида индия проходит электрический ток. При прохождении электрического тока через фосфид индия в результате процесса рекомбинации дырок и электронов возникают фотоны, то есть излучение. Это излучение непосредственно попадает в кремниевый волновод.

Рис. 10. Структура гибридного кремниевого лазера

Описанная структура кремниевого лазера не требует дополнительной юстировки лазера относительно кремниевого волновода, поскольку их взаимное расположение друг относительно друга реализуется и контролируется непосредственно в ходе формирования монолитной структуры гибридного лазера.

Процесс производства такого гибридного лазера разбит на несколько основных этапов. Первоначально в «бутерброде», состоящем из слоя кремния, слоя изолятора (оксид кремния) и еще одного слоя кремния, путем травления формируется волноводная структура (рис. 11), причем данный технологический этап производства не отличается от тех процессов, которые используются в ходе производства микросхем.

Рис. 11. Формирование волноводной структуры в кремнии

Далее, на поверхности волновода необходимо сформировать кристаллическую структуру фосфида индия. Вместо того чтобы использовать технологически сложный процесс выращивания кристаллической структуры фосфида индия на уже сформированной структуре волновода, подложку из фосфида индия вместе со слоем полупроводника n -типа формируют отдельно, что значительно проще и дешевле. Задача заключается в том, чтобы соединить фосфид индия со структурой волновода.

Для этого и структуру кремниевых волноводов, и подложку фосфида индия подвергают процессу окисления в низкотемпературной кислородной плазме. В результате такого окисления на поверхности обоих материалов создается пленка оксида толщиной всего 25 атомных слоев (рис. 12).

Рис. 12. Подложка фосфида индия
с сформированным слоем оксида

При нагревании и прижимании друг к другу двух материалов слой оксида выполняет функции прозрачного клея, обеспечивая их сплавление в единый кристалл (рис. 13).

Рис. 13. «Склеивание» структуры кремниевых волноводов
с подложкой фосфида индия

Именно из-за того, что кремниевый лазер описанной конструкции состоит из двух склеенных друг с другом материалов, его и называют гибридным. После процесса склеивания путем травления удаляют лишнюю часть фосфида индия и формируют металлические контакты.

Технологический процесс производства гибридных кремниевых лазеров позволяет размещать на одной микросхеме десятки и даже сотни лазеров (рис. 14).

Рис. 14. Схема чипа, содержащего четыре
гибридных кремниевых лазера

Первый чип, продемонстрированный компанией Intel совместно с Калифорнийским университетом, содержал в себе семь гибридных кремниевых лазеров (рис. 15).

Рис. 15. Излучение семи гибридных кремниевых лазеров,
выполненных на одном чипе

Эти гибридные лазеры функционируют на длине волны 1577 нм при пороговом токе 65 мA с мощностью излучения до 1,8 мВт.

В настоящее время гибридный кремниевый лазер работоспособен при температуре менее 40 °С, однако в будущем рабочую температуру планируется повысить до 70 °С, а значение порогового тока уменьшить до 20 мА.

Будущее кремниевой фотоники

Создание гибридного кремниевого лазера может иметь далеко идущие последствия для кремниевой фотоники и послужить отправной точкой для наступления эры высокопроизводительных вычислений.

В недалеком будущем в чип будут интегрироваться десятки кремниевых лазеров, модуляторов и мультиплексор, что позволит создавать оптические каналы связи с терабитной пропускной способностью (рис. 16).

Рис. 16. Микросхема оптического канала связи,
содержащая в себе десятки кремниевых лазеров,
фильтры, модуляторы и мультиплексор

«Благодаря этой разработке мы сможем создавать недорогие оптические шины данных с терабитной пропускной способностью для компьютеров будущего. Тем самым мы сможем приблизить наступление новой эры высокопроизводительных вычислений, - отметил Марио Паниччиа (Mario Paniccia), директор лаборатории Photonics Technology Lab в корпорации Intel. - Несмотря на то что до начала коммерческого использования этой технологии еще очень далеко, мы уверены, что на одной кремниевой микросхеме можно будет разместить десятки и даже сотни гибридных кремниевых лазеров, а также других компонентов на базе кремниевой фотоники».

Сегодня оптические соединения используются преимущественно на уровне устройство-устройство или в оптических сетях. Их основные составляющие и принципы функционирования рассмотрены в одном из предыдущих . Однако существуют еще три категории межкомпонентных соединений - плата-плата, микросхема-микросхема и внутрисхемные связи, главная трудность реализации оптических соединений для которых заключается в необходимости объединить оптические и электронные функции на общей полупроводниковой подложке. Эту задачу, возможно, решит кремниевая фотоника, использующая созданные на основе кремния материалы для генерирования, передачи, управления и детектирования света.

Побудительные причины

Интерес к разработке оптических каналов связи на уровне плат был вызван созданием лезвийных серверов. Здесь очевидным объектом для применения оптических технологий является соединительная панель (backplane). Обычно на ней реализуются высокоскоростные соединения типа точка-точка или многоточечные с типичной длиной до 1 м. К ключевым преимуществам оптических соединительных панелей относятся низкие перекрестные помехи и большая полоса пропускания. Однако многие из сегодняшних оптических соединительных панелей скорее похожи на коммутационные. В них был продемонстрирован ряд оптических технологий, включая полимерные световоды, построенные на кремнии, ленточные, интегрированные с лазерами поверхностного излучения с вертикальным резонатором (VCSEL), планарные цепи световодов и фотодиоды. Но ни одна из них, за исключением некоторых нишевых приложений, не заменила медные соединения.

Трудно предугадать, прекратится ли гонка частот тактирования в процессорной индустрии, ведь экстраполируя закон Мура, можно ожидать к концу 2010 г. появления чипов с тактовыми частотами около 10 GHz. Однако и при существующих частотах становится все труднее обеспечивать необходимую полосу пропускания в печатных платах или модулях на базе медных шин. Было показано, что потери на печатных платах стандарта FR-4 (Flame Resistance 4) с медной разводкой быстро растут при частотах свыше 1 GHz, при этом ухудшается отношение сигнал/шум и появляются ошибки в синхронизации. Вдобавок перекрестные помехи ограничивают плотность разводки. Высокоскоростные оптические каналы длиной до 10 см между микросхемами имеют ряд преимуществ по сравнению с медными. У них меньшие потери при большей полосе пропускания, кроме того, они не подвержены перекрестным электромагнитным помехам. В последние 20 лет были предложены оптические технологии для преодоления ограничений медной проводки, однако относительно высокая стоимость и использование экзотических материалов сделали их неприемлемыми для широкомасштабного производства.

Разработка электрических связей внутри интегральных микросхем, функционирующих на частотах в несколько гигагерц, также постоянно усложняется. В такой ситуации становятся потенциально привлекательными оптические каналы с типичной длиной менее 1 см. Этому способствуют следующие причины:

  • снижение времен задержек по сравнению с использованием медных проводников;
  • большая полоса пропускания, не сдерживающая рост тактовых частот транзисторов;
  • пониженное электропотребление;
  • нечувствительность к электромагнитным помехам.

Однако сегодня работы по интеграции оптики и электроники не только пребывают на начальных этапах, но и весьма дороги по сравнению с традиционными технологиями на базе меди.

Весьма интенсивно ведет исследования в этой области Intel, подход которой к решению проблемы базируется на кремниевой фотонике. Основными строительными блоками предлагаемой интегральной платформы здесь являются настраиваемый лазер с внешним резонатором (External Cavity Laser - ECL), кремниевый модулятор, кремний-германиевый фотодетектор и недорогая технология взаимосвязей.

Кремниевые источники света

Хотя лазеры на базе кремния еще недостижимы, работы над такими источниками света, излучающими в видимом и инфракрасном диапазонах, широко ведутся во всем мире. Кремниевые источники являются одной из органических частей для монолитной интеграции, поскольку позволяют изготовить на едином субстрате и оптические элементы, и управляющую электронику. При использовании кремниевых световодов излучение должно быть в инфракрасном диапазоне с длиной волны более 1,1 мкм, поскольку именно в этом окне потери минимальны.

В настоящее время большинство исследований ведется в направлении использования эффекта электролюминесценции - излучения, получаемого в результате электрической накачки. До тех же пор, пока надежные и эффективные кремниевые излучатели не будут получены, рассматривается возможность гибридной интеграции, т. е. применения некремниевых источников света, соединяемых с кремниевыми световодами.

Трудность в изготовлении кремниевых источников света вызвана наличием запрещенной энергетической зоны с непрямыми переходами. Это приводит к тому, что вероятность безызлучательных переходов (в частности, рекомбинации Оже) становится выше, чем с эмиссией света.

Чтобы получить инфракрасное излучение, в кремний нужно ввести соответствующие примеси, например эрбий. Кремниевые световоды с примесью эрбия излучают в инфракрасном диапазоне, если дополнительно легировать их кислородом для образования оптически активных ионов в решетке. Однако данный тип устройств имеет существенный недостаток: хотя интенсивность излучения бывает относительно велика при 100° К, при комнатных температурах она резко падает.

Следующий путь повышения эффективности выхода света в кремнии - снижение количества безызлучательных переходов при рекомбинации электрон-дырка. Этого достигают посредством уменьшения диффузии носителей к центрам безызлучательной рекомбинации в решетке, что увеличивает вероятность переходов с излучением света. Один из способов такого ограничения, совместимый с технологией СБИС, основан на применении нанокристаллов. Другие средства предусматривают использование квантовых колодцев в GeSi или дефектов кристаллической решетки.

Для получения излучения с другими длинами волн можно включать примеси, отличные от эрбия. Например, тербий обеспечивает излучение с длинами волн 0,98 и 0,54 мкм. Однако время жизни и надежность таких устройств для применения их в практических целях слишком низки.

Еще одно ограничение для всех типов кремниевых источников света с прямым током - низкая скорость прямой модуляции - порядка 1 MHz. Это значит, что для создания высокоскоростных каналов они требуют внешних модуляторов.

Архитектура устройства

Работы по созданию кремниевых источников света продолжаются, однако они еще далеки от завершения. И до тех пор, пока не появится надежный и эффективный кремниевый источник света, интегрированные системы фотоники будут нуждаться в традиционных материалах III-V групп таблицы Менделеева.

Приведем, вслед за Intel, пример, как могут быть использованы лазер с внешним резонатором и кремниевый световод с решеткой Брэгга в качестве фильтра для генерируемого кристаллом групп III-V света с целью получения нужной длины волны для оптических коммуникаций. Сильный термооптический эффект в кремнии можно применять для настройки генерируемой волны.

Решетка Брэгга изготавливалась травлением на пластине «кремний на изоляторе» (SOI) множества бороздок размером 1,2×2,3×3,4 мкм. Затем, после соответствующей обработки, детали которой мы опускаем, решетка Брэгга помещалась в световод. ELC строился посредством стыка световода, содержащего решетку Брэгга, с чипом усилителя. Резонатор формировался между решеткой Брэгга, служащей зеркалом с одной стороны, и чипом усилителя с 90%-ным отражающим покрытием, образующим зеркало с противоположной стороны. Световод с решеткой Брэгга стыковался с усилительным чипом под углом 8°, что вместе с неотражающим покрытием уменьшало эффективную отражательную способность грани до 10-5. Генерируемый луч выходил с той грани лазерного диода, на которую было нанесено 90%-ное отражающее покрытие, и попадал в конус одномодового оптоволокна с линзой (рис. 1). Линза служила для увеличения связи между оптоволокном и лазером. Для лучшего понимания принципа работы лазера с внешним резонатором с использованием решетки Брэгга приведем его схему на более традиционных компонентах (рис. 2).

Кремниевые модуляторы

Итак, выше был описан настраиваемый лазер на базе сложного полупроводникового диода групп III-V и кремниевой решетки Брэгга. Однако лазер на выходе дает непрерывную волну, которая не несет информации. Для передачи данных по оптическим коммуникационным каналам необходим оптический модулятор. Такие устройства с частотой модуляции выше 1 GHz в типичном случае изготовлялись либо из сегнетоэлектрических кристаллов ниобата лития (LiNbO3), либо из сложных полупроводников с множеством квантовых ям, где используется локализованный эффект Штарка (расщепление спектральных линий атома под действием внешнего электрического поля) или эффект электроабсорбции. Частота модуляции в этих устройствах достигает 40 GHz.

Потребность рынка в недорогих решениях стимулировала разработки модуляторов на базе кремния. К тому же кремниевая фотоника позволяет получать монолитные интегрированные оптические элементы на базе КМОП-технологии.

Многими исследовательскими центрами были предложены и продемонстрированы кремний-базированные оптические модуляторы. Мы приведем здесь экспериментальный вариант устройства на основе интерферометра Маха-Цендера (МЦИ). Благодаря оригинальной разработке фазосдвигающей схемы на базе МОП-конденсатора, встроенного в пассивный кремниевый волновод МЦИ, для длины волны 1,55 мкм удается достичь частоты модуляции 2,5 GHz.

Схематическое изображение МЦИ приведено на рис. 3. Входящий свет расщепляется на две равные части и направляется в два плеча интерферометра. Каждое из них может содержать активную секцию, которая с помощью прикладываемого напряжения незначительно изменяет скорость распространения света в плече. За счет этого на выходе получают сдвиг фаз лучей, что вследствие интерференции приводит к колебаниям интенсивности в результирующем луче.

Кремниевые фотодетекторы

Последним активным компонентом, который должен быть встроен в полностью кремниевую оптическую платформу, является фотодетектор. Кремниевые фотодетекторы уже получили широкое распространение для приложений, использующих видимый диапазон света (0,4-0,7 мкм), например, в цифровых камерах и сканерах, вследствие своей высокой эффективности для этих длин волн. Однако большинство полупроводниковых лазеров, применяемых в коммуникациях, работают в ближней инфракрасной области, обычно 850, 1310 и 1550 нм, в диапазоне, в котором кремний является прозрачным, т. е. плохим детектором. Самый распространенный способ увеличения тока выхода кремниевых фотодетекторов заключается в добавлении германия, что приводит к уменьшению ширины запрещенной зоны и увеличению длины волны детектируемого света.

На рис. 4 приведено сечение фотодетектора на базе световодов из SiGe, разработанного Intel. Он выполнен на той же платформе SOI, что и ранее рассмотренный модулятор. Слой SiGe расположен на вершине кремниевого наплыва световода.

Первый вариант детектора в качестве поглощающего свет материала использовал 18 квантовых ям на базе Si0.5Ge0.5. Чувствительность для некоторых устройств достигала 0,1 А/В при длине волны света 1316 нм. Разработчики полагают, что путем некоторых усовершенствований чувствительность может быть повышена до 0,5 А/В. Полоса пропускания была ниже 500 MHz вследствие значительного сдвига валентной зоны, что препятствовало транспорту дырок. Однако полагают, что этот недостаток может быть исправлен за счет изменения состава пленки. Моделирование показывает, что пропускная способность может достигать 10 Gbps.

Исследования в области планарной оптики на основе кремния ведутся во многих лабораториях мира в течение уже нескольких десятилетий, однако промышленные образцы еще не получены. Тем не менее в последнее время наблюдается существенный прогресс в понимании актуальных проблем и возможных способов их решения.

Квантовые ямы

Квантовой ямой называется потенциальная яма, которая ограничивает движение частиц. Попадая в нее, частицы, ранее свободно перемещавшиеся в трехмерном пространстве, могут двигаться только в плоской области, по сути, в двухмерной. Эффект ограничения движения проявляется в том случае, когда размер квантовой ямы становится сравнимым с де-бройлевской длиной волны носителей (обычно электронов или дырок). Рассмотрим на качественном уровне, как создается квантовая яма.

Как известно, в соответствии с зонной теорией, энергетический спектр полупроводника состоит из трех зон (снизу вверх): валентной, запрещенной и зоны проводимости. Если поместить тонкий слой полупроводника с узкой запрещенной зоной между двумя слоями полупроводников с широкими запрещенными зонами, то электроны зоны проводимости среднего тонкого слоя, у которых энергия ниже уровня энергии широких запрещенных зон прилегающих полупроводников, не смогут проникнуть сквозь потенциальный барьер, образованный ими. Таким образом, два гетероперехода ограничивают движение электронов с двух сторон, т. е. электроны оказываются запертыми в одном направлении. Можно сказать, что движение электронного газа в квантовой яме становится двухмерным.

Похожие публикации