Видеоакселераторы. Графические акселераторы Акселератор карты

Видеокарта – одно из важнейших устройств современного персонального компьютера, которое отвечает за обработку двухмерной и трехмерной графики, видео. Зачастую возможностей встроенного в материнскую плату видеочипа не хватает, и в том случае, если пользователь планирует использовать ПК в качестве медиацентра или игровой платформы, то без мощной видеокарты среднего уровня никак не обойтись.

AMD vs nVidia
На рынке сейчас существует только два производителя видеочипов: компании AMD и nVidia. Перед приобретением графического акселератора стоит задуматься, карточку какого производителя вы бы хотели видеть в системном блоке своего компьютера. У обеих компаний есть свои достоинства и недостатки, на которых стоит остановиться подробнее.
Компания nVidia на данный момент занимает лидирующие позиции на рынке, и у большинства пользователей графику обрабатывает графический чип калифорнийской корпорации. Достоинствами nVidia можно назвать качественные драйверы и поддержку технологии PhysX, которая интегрирована во многие видеоигры. Поддержка PhysX обеспечивает реалистичную обработку физических эффектов: физики жидкостей, тканей, частиц. В том случае, если видеокарта не имеет аппаратной поддержки данной технологии, это приводит к серьезному падению производительности в игровых приложениях
У видеочипов компании AMD (ранее выпускавшихся под брендом Radeon) также есть свои козыри в рукаве. Как правило, видеокарты, созданные на основе чипов AMD, могут похвастаться большей производительностью при меньшей цене. Также считается, что чипы от канадской корпорации более пригодны для разгона с помощью специальных утилит. В то же время, как показывает практика, видеокарты на чипах от AMD менее надежны и чаще сбоят в ресурсоемких приложениях.
В итоге вечную дилемму «что же купить, AMD или nVidia, каждый должен решить для себя самостоятельно. Что для вас важнее: более высокая надежность или же производительность? Нужна ли вам поддержка PhysX и стоит ли за нее переплачивать? В любом случае, модельный ряд видеокарт у обеих корпораций включает в себя огромное количество предложений, на которые стоит обратить внимание.
Выбирая ту или иную графическую карту, вне зависимости от производителя, стоит в первую очередь ориентироваться на мощностные показатели и объективные результаты тестов в специальных программах-бренчмарках. Особенно хорошо видеоплату протестирует программа 3D Mark.

Бегом в магазин.
Если ориентироваться на видеокарту среднего уровня (это где-то от 3000 руб. до 4000 руб.), то стоит обратить внимание на последние решения от nVidia GeForce GTX 550 или же AMD HD 7770. Это относительно недорогие и в то же время производительные чипы, которые позволят играть во все современные видеоигры в высоком разрешении и без падений FPS.
Стоит остановиться на конкретных моделях. Среди карт на основе видеочипа nVidia GeForce GTX 550 особенно хороша Palit GeForce GTX 550 Ti 1024MB GDDR5. Видеоплата работает с интерфейсом PCI-Express x16 2.0, поддерживаемом большинством современных материнских плат. 1024 Мб видеопамяти будет более чем достаточно для комфортной игры в full-HD разрешении, видеочип достаточно производителен и способен работать на частоте 900 МГц. Благодаря качественной системе охлаждения данный показатель может быть повышен примерно на 15%. Кулер имеет весьма широкие лопасти, что избавит пользователей от излишнего шума. Что касается памяти, то она работает на частоте 1025 МГц, что весьма неплохо и соответствует самым строгим требованиям сегодняшних видеоигр. Естественно, устройство поддерживает такие технологии, как Nvidia SLI (позволяет подключать одновременно две видеоплаты), а также 3D Vision, 3D Vision Surround, CUDA, PureVideo HD и PhysX.
Видеокарта Sapphire HD 7770 может похвастаться более высокой производительностью при меньшей цене. Заплатить придется, как уже говорилось выше, отсутствием технологий 3D Vision и PhysX. GDDR5 память объемом 1024MB работает на частоте 1125 МГц. Графический чип работает на крейсерской частоте 1 000 МГц, но опять-таки может быть разогнан.

Аttention!
Ориентируясь на данные рекомендации, вы легко сможете приобрести недорогую, но производительную видеокарту. При этом стоит помнить, что нет ничего более изменчивого, чем рынок графических ускорителей. Сегодня видеокарта стоит 5000, а завтра за нее никто не даст и 1000, поэтому нужно быть предельно внимательным, чтобы не быть обманутым недобросовестным продавцом.

Для решения многих задач с использованием компьютера необходима высокока­чественная графика. Изображение такого качества требует вывода на экран боль­шого количества пикселов. Но сначала цвет каждого пиксела нужно вычислить и записать его в видеобуфер. Оттуда информация пересылается в дисплей с такой скоростью, чтобы экран обновлялся по меньшей мере 30 раз в секунду.

Вычисление интенсивности и цвета пикселов может выполняться программ­ным обеспечением. Результирующее изображение следует записать в видеобу­фер, а оттуда переслать на дисплей через шину компьютера. Однако объемы обра­батываемых таким образом данных будут настолько велики, что, если возложить всю их обработку на процессор, у него не останется времени для выполнения дру­гих задач. Кроме того, использование шины компьютера для пересылки содержи­мого видеобуфера на дисплей приведет к тому, что шина также почти полностью будет занята этими данными. Если один пиксел занимает 32 бита, для изображе­ния размером 1024 х 1024 пикселов понадобится 4 Мбайт, и для его пересылки потребуется шина со скоростью передачи не менее 120 Мбайт/с.

В большинстве графических приложений на экран выводятся трехмерные (3D) объекты. В частности, в компьютерных играх создается искусственный трехмер­ный мир с видеоизображениями, формируемыми программным путем. Для их по­лучения требуются очень сложные вычисления, которые лучше всего выполнять на отдельном специализированном процессоре. Такой процессор, называемый GPU (Graphics-Processing Unit - устройство обработки графики), является осно­вой популярных графических плат, установленных в большинстве персональных компьютеров. Кроме процессора графическая плата содержит высокоскоростную память объемом от 8 до 64 Мбайт. Эта память используется графическим процес­сором для выполнения вычислений и хранения результирующего изображения, предназначенного для вывода на экран. Дисплей подключается прямо к графиче­ской плате, так что она может обмениваться с ним информацией без помощи ши­ны компьютера. Высококачественные графические платы могут обновлять экран со скоростью от 75 до 200 раз в секунду.

Графический порт

Графическая плата может соединяться с компьютером посредством шины (напри­мер, PCI). Однако чаще на материнской плате компьютера имеется соединитель­ный слот, называемый AGP (Accelerated Graphics Port - ускоренный графический порт), специально предназначенный для графической платы. Это 32-разрядный порт, поддерживающий более высокую скорость пересылки данных, чем шина PCI. Он известен как AGP 1х, 2х, 4х или 8х, где AGP 1х - это исходный стандарт, определяющий передачу данных со скоростью 264 Мбайт/с. Последние версии стандарта AGP поддерживают в несколько раз большие скорости передачи дан­ных, в частности стандартом AGP 8х устанавливается скорость передача данных, равная 2 Гбайт/с.

Графическая обработка

В компьютерной графике трехмерный объект представляется в виде поверхно­сти, состоящей из большого количества маленьких многоугольников (как прави­ло, треугольников). Основной задачей графической обработки является преобра­зование трехмерного изображения в двухмерное, максимально близкое к тому, каким оно видится человеческим глазом. Для определения проекции и перспекти­ вы объектов требуется вычислять местоположения вершин треугольников, пред­ставляющих разные фрагменты изображения. Далее с помощью сложных алго­ритмов создания реалистичного изображения вычисляются цвета и тени каждого треугольника. При этих вычислениях учитывается расположение источника све­та, его отражение от различных поверхностей, тени и т. п. Важной частью данного процесса является формирование определенной текстуры поверхности, напри­мер древесных волокон или кирпичной кладки. Текстура обычно задается с помо­щью элементов, именуемых текселами (texel). Отдельные треугольники заполня­ются текселами, в результате чего создается впечатление текстурной поверхности объекта. Скрытые части изображения удаляются путем отсечения (clipping). По­следний этап обработки изображения, когда определяется цвет и яркость каждого пиксела, называется самплингом (sampling), а весь вычислительный процесс, в ре­зультате которого трехмерное изображение превращается в набор отправляемых на дисплей пикселов, - визуализацией (rendering).

В случае движущихся изображений все эти вычисления повторяются по многу раз в секунду. Чтобы движение на экране было плавным, пикселы изображения должны пересчитываться как минимум 20 раз в секунду, а лучше 30 или 40. Это значение называется частотой кадров. Скорость выполнения графической платой описанных вычислений характеризуется ее коэффициентом T&L (Transformations and Lighting - преобразование и освещение), равным количеству треугольников, для которых видеокарта может выполнить проецирование, отсечение, освещение и самплинг за одну секунду. Как правило, это значение изменяется в пределах от 10 до 30 млн. треугольников в секунду.

В табл. 10.1 приведены характеристики графической платы RADEON VE про­изводства ATI Corp. Похожими возможностями обладает графический процессор GeForce 2 MX производства «Vidia Corp. Это примеры популярных плат для пер­сональных компьютеров. В профессиональных системах используются более мощные платы с расширенными возможностями. А в ближайшем будущем в этой быстро развивающейся области компьютерной индустрии ожидается появление еще более мощных процессоров.

Таблица 10,1. Графическая плата RADEON VE
Компонент Описание

Микросхема GPU RADEON VE

Шина AGP 4х

Память До 64 Мбайт, DDR SDRAM

Цвет 32 бита, включая 8 бит, зарезервированных для будущего

использования

Число пикселов 2048 х 1536

Коэффициент T&L 30 млн треугольников в секунду

Частота обновления От 75 до 200 раз в секунду в зависимости от установленного

экрана разрешения

Дополнительные Поддержка TV, VCR, DVD, HDTV и MPEG 2

возможности

Программное обеспечение графических плат

Графические платы предназначены для реализации множества сложных функций. Чтобы их использовать, нужно иметь специальное программное обеспечение, раз­работанное для конкретной платы. В этой области очень мало стандартов, и рынок открыт для конкуренции. Таким образом, для улучшения качества изображения недостаточно просто установить в компьютер лучшую графическую плату. Требу­ется специальное программное обеспечение. Очевидно, что назрела необходимость в разработке стандартов программных интерфейсов приложений (Application Programming Interface, API), позволяющих создавать аппаратно-независимое про­граммное обеспечение. И такие стандарты уже начинают появляться. Когда они получат достаточное распространение, программное обеспечение, интенсивно ис­пользующее возможности графики (например, компьютерные игры), сможет кор­ректно работать с графическими платами разных производителей. Примером такого стандарта является OpenGL (Open Graphics Language - открытая графи­ческая библиотека). Ему и подобным стандартам, связанным с различными ас­пектами обработки графики, соответствует все больше графических плат.

3150 был официально представлен в 2010 году. Изначально имел крайне низкую скорость быстродействия. Поэтому его можно было использовать лишь только при реализации самых простых задач на энергоэффективных ноутбуках начального уровня. Именно спецификациям и назначению этого адаптера и посвящен этот миниатюрный обзорный материал.

Специализация

Как было ранее уже отмечено, графический ускоритель Intel Media Graphics Accelerator 3150 отличался крайне низким уровнем быстродействия. Но при этом энергопотребление этого чипа было сведено к минимуму. Также нужно отметить то, что он предназначался для использования в мобильных компьютерах. Поэтому основная сфера использования данного устройства - это ноутбуки и нетбуки экономкласса с низким быстродействием и высоким уровнем автономной работы.

Основные параметры

Кодовое название Intel Media Graphics Accelerator 3150 - Pineview. Этот ускоритель, как интегрированное устройство, имеет на сегодняшний день устаревшую компоновку. Современные встроенные адаптеры находятся на одной подложке с микропроцессором. А вот рассматриваемое устройство изготавливалось в виде отдельной микросхемы и располагалось на системной плате. Чип адаптера производился по технологии 45 нм.

Тактовая частота этого акселератора составляет 200 МГц. Причем это фиксированное значение, и как-то изменить его не представляется возможным. В его состав разработчики включили всего лишь 2 потоковых процессора. Характеристики Intel Graphics Media Accelerator 3150 указывают на то, что у этого адаптера нет отдельной видеопамяти. В процессе функционирования он вынужден использовать для своих нужд системную память. Объем видеобуфера задается в системе BIOS.

Актуальность акселератора

На момент выпуска данный адаптер относился к группе решений начального уровня с низким быстродействием и скоростью работы. Разработчики изначально ставили цель сделать такую видеокарту максимально энергоэффективной. За счет этого существенно возрастала автономность ноутбука. Сейчас же быстродействие такого интегрированного графического адаптера позволяет реализовывать наиболее простые прикладные задачи. К ним можно отнести, например, обработку текстовой информации или же таблиц. Также такой ускоритель позволяет посмотреть фильм, но в очень низком качестве. Даже некоторые наиболее простые игрушки ему вполне по силам запустить.

Заключение

Изначально Intel Media Graphics Accelerator 3150 имел крайне низкую скорость работы. Сейчас же он полностью устарел. Поэтому такие компьютеры сейчас нуждаются в замене. Приобретать ноутбук с такой графической подсистемой на текущий момент нецелесообразно.

Каждый пользователь может заметить, что при 8 битном цвете любое графическое изображение смотрится не так хорошо, как при 16 битном представлении цвета. Однако, большинство пользователей не могут заметить разницы при просмотре хорошо сделаного графического изображения в режиме 16 битного и 32 битного представления цвета. Фраза "хорошо сделанное графическое изображение" означает растрирование (dithering - дизеринг) -- процесс смешивания двух соседних цветов, для получения третьего с одновременным обеспечением плавных переходов между элементами изображения. В результате использования технологии растрирования получаются изображения, которые смотрятся практически одинакова в режимах с разной глубиной представления цвета.

Для 16 битного представления цвета требуется в два раза больше памяти, чем для 8 битного, а для 32 битного представления цвета требуется в два раза больше памяти, чем для 16 битного. В связи с тем, что графические адаптеры имеют ограниченные объемы памяти, экономия этого ресурса становится одной из приоритетных задач. Ко всему прочему, отображение 32 битных данных зачастую происходит дольше, чем отображение 16 битных данных. А это уже относится к проблеме производительности, о чем тоже не стоит забывать. Именно поэтому обычному поьзователю стоит использовать 16 битное представление цвета в Windows95/98/NT.

Пользователь или приложение выбирают тот режим представления цвета, который для них наиболее удобен. Текстовый процессор, электронная таблица и 2D игры могут прекрасно работать в режиме 8 битного представления цвета. Видеофильмы, 3D игры и 3D приложения обычно используют 16 битный режим представления цвета, в качестве компромисса между качеством изображения и производительностью. При использовании программ для просмотра высококачественных фотографий, их редактирования, а так же приложений для создания графики лучше всего использовать 24/32 битное представление цвета.

Как же узнать, в каком режиме работает RAMDAC? Если Вы используете Windows, то у Вас есть возможность выбрать глубину представления цвета между режимами 8, 16 или 24/32 бит. В 8 битном режиме используется палитра, т.е. RAMDAC работает со скоростью 205 MHz, во всех других режимах, с другой глубиной представления цвета, палитра не используется и RAMDAC работает со скоростью 220 MHz. Если запускается на выполнение приложение, работающее в полноэкранном режиме (например, в таком режиме работают большинство игр), то тогда само приложение определяет, в каком режиме будет работать RAMDAC. Иногда приложение выбрав режим работы сообщает эту информацию пользователю. Но в большинстве случаев такого не происходит.

Пользователь может узнать, в каком режиме работает RAMDAC, проделав следующие действия: Найдите поверхность, в которой есть плавный переход от одного цвета к другому (как, например в небе у вас над головой). Если переход от одного цвета к другому выглядит так, будто состоит из перемежающихся точек, сильно отличающихся по цвету, значит ваше приложение работает в 8 битном режиме представления цвета. В противном случае, т.е. если переход от одного цвета к другому действительно плавный, ваше приложение работает с другой глубиной представления цвета. При этом, не лишне еще раз напомнить, что средний пользователь не может с уверенностью опредилить, с какой глубиной представления цвета он имеет дело, с 16 или 24/32 бит.

Удостовериться, что заявленные значения скорости работы RAMDAC правда - достаточно просто. Если известно, в каком разрешении вы работаете, например 1024х768, и с какой частотой происходит обновление изображения (refresh rate), например 75 Hz, значит можно узнать какова скорость работы DAC. Скорости в 220 MHz вполне достаточно для отображения в режимах 1280х1024 при 85 Hz и 1600х1200 при 75 Hz. Для режима 1600х1200 при 85 Hz требуется скорость в 250 MHz. Известно, что по Европейским стандартам во всех разрешениях должна поддерживаться частота обновления экрана в 85 Hz, однако лишь немногие модели современных мониторов могут работать в режиме 1600х1200 при 85 Hz.

Напомним известные факты: если частота обновления экрана слишком низкая, то пользователю будет заметно мерцание изображения, в следствии чего можно испортить зрение. Частота обновления экрана в 75 Hz уже достаточно быстрая, чтобы глаз человека мог заметить мерцание. Поэтому, гораздо более разумно сосредоточить внимание на значениях частоты обновления изображения, а не на скорости работы DAC, тем более, что эти значения взаимосвязаны.

Графические акселераторы (ускорители) - специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета. Видеоакселераторы

Изображение, которое мы видим на экране монитора, представляет собой выводимое специальным цифроаналоговым преобразователем RAMDAC (Random Access Memory Digital to Analog Converter) и устройством развертки содержимое видеопамяти. Это содержимое может изменяться как центральным процессором, так и графическим процессором видеокарты - ускорителем двухмерной графики (синонимы: 2D-ускоритель, 2D-акселератор, Windows-акселератор или GDI-акселератор). Современные оконные интерфейсы требуют быстрой (за десятые доли секунды) перерисовки содержимого экрана при открытии/закрытии окон, их перемещении и т. п., иначе пользователь будет чувствовать недостаточно быструю реакцию системы на его действия. Для этого процессор должен был бы обрабатывать данные и передавать их по шине со скоростью, всего в 2-3 раза меньшей, чем скорость работы RAMDAC, а это десятки и даже сотни мегабайт в секунду, что практически нереально даже по современным меркам. В свое время для повышения быстродействия системы были разработаны локальные шины, а позднее - 2D-ускорители, которые представляют собой специализированные графические процессоры, способные самостоятельно рисовать на экране курсор мыши, элементы окон и стандартные геометрические фигуры, предусмотренные GDI - графической библиотекой Windows. 2D-ускорители обмениваются данными с видеопамятью по своей собственной шине, не загружая системную шину процессора. По системной шине 2D-ускоритель получает только GDI-инструкции от центрального процессора, при этом объем передаваемых данных и загрузка процессора в сотни раз меньше.

Современные 2D-ускорители имеют 64- или 128-разрядную шину данных, причем для эффективного использования возможностей этой шины на видеокарте должно быть установлено 2 или 4 Мбайт видеопамяти соответственно, иначе данные будут передаваться по вдвое более узкой шине с соответствующей потерей в быстродействии.

Можно сказать, что к настоящему моменту 2D-ускорители достигли совершенства. Все они работают столь быстро, что несмотря на то, что их производительность на специальных тестах может отличаться от модели к модели на 10-15%, пользователь, скорее всего, не заметит этого различия. Поэтому при выборе 2D-ускорителя следует обратить внимание на другие факторы: качество изображения, наличие дополнительных функций, качество и функциональность драйверов, поддерживаемые частоты кадровой развертки, совместимость с VESA (для любителей DOS-игр) и т. п. Микросхемы 2D-ускорителей в настоящее время производят ATI, Cirrus Logic, Chips&Technologies, Matrox, Number Nine, S3, Trident, Tseng Labs и другие компании.

Видеоадаптер - это электронная плата, которая обрабатывает видеоданные (текст и графику) и управляет работой дисплея. Содержит видеопамять, регистры ввода вывода и модуль BIOS. Посылает в дисплей сигналы управления яркостью лучей и сигналы развертки изображения .

Наиболее распространенный видеоадаптер на сегодняшний день - адаптер SVGA (Super Video Graphics Array - супервидеографический массив), который может отображать на экране дисплея 1280х1024 пикселей при 256 цветах и 1024х768 пикселей при 16 миллионах цветов.

С увеличением числа приложений, использующих сложную графику и видео, наряду с традиционными видеоадаптерами широко используются разнообразные устройства компьютерной обработки видеосигналов :

Рис. 2.12. Графический акселератор

Графические акселераторы (ускорители) - специализированные графические сопроцессоры, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета.

Фрейм-грабберы , которые позволяют отображать на экране компьютера видеосигнал от видеомагнитофона, камеры, лазерного проигрывателя и т. п., с тем, чтобы захватить нужный кадр в память и впоследствии сохранить его в виде файла.

TV-тюнеры - видеоплаты, превращающие компьютер в телевизор. TV-тюнер позволяет выбрать любую нужную телевизионную программу и отображать ее на экране в масштабируемом окне. Таким образом можно следить за ходом передачи, не прекращая работу.

2.13. Клавиатура

Клавиатура компьютера - устройство для ввода информации в компьютер и подачи управляющих сигналов. Содержит стандартный набор клавиш печатной машинки и некоторые дополнительные клавиши - управляющие и функциональные клавиши, клавиши управления курсором и малую цифровую клавиатуру.

Все символы, набираемые на клавиатуре, немедленно отображаются на мониторе в позиции курсора (курсор - светящийся символ на экране монитора, указывающий позицию, на которой будет отображаться следующий вводимый с клавиатуры знак).

Наиболее распространена сегодня клавиатура c раскладкой клавиш QWERTY (читается "кверти"), названная так по клавишам, расположенным в верхнем левом ряду алфавитно-цифровой части клавиатуры:

Рис. 2.13. Клавиатура компьютера

Такая клавиатура имеет 12 функциональных клавиш , расположенных вдоль верхнего края. Нажатие функциональной клавиши приводит к посылке в компьютер не одного символа, а целой совокупности символов. Функциональные клавиши могут программироваться пользователем. Например, во многих программах для получения помощи (подсказки) задействована клавиша F1 , а для выхода из программы - клавиша F10 .

Управляющие клавиши имеют следующее назначение:

Малая цифровая клавиатура используется в двух режимах - ввода чисел и управления курсором . Переключение этих режимов осуществляется клавишей Num Lock .

Клавиатура содержит встроенный микроконтроллер (местное устройство управления), который выполняет следующие функции:

    последовательно опрашивает клавиши, считывая введенный сигнал и вырабатывая двоичный скан-код клавиши;

    управляет световыми индикаторами клавиатуры;

    проводит внутреннюю диагностику неисправностей;

    осуществляет взаимодействие с центральным процессором через порт ввода-вывода клавиатуры.

Клавиатура имеет встроенный буфер - промежуточную память малого размера, куда помещаются введённые символы. В случае переполнения буфера нажатие клавиши будет сопровождаться звуковым сигналом - это означает, что символ не введён (отвергнут). Работу клавиатуры поддерживают специальные программы, "зашитые" в BIOS , а также драйвер клавиатуры, который обеспечивает возможность ввода русских букв, управление скоростью работы клавиатуры и др.

Похожие публикации